
Chapter 1

LINEAR EQUATIONS

1.1 Introduction to linear equations

A linear equation in n unknowns x1, x2, · · · , xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an, b are given real numbers.

For example, with x and y instead of x1 and x2, the linear equation
2x+ 3y = 6 describes the line passing through the points (3, 0) and (0, 2).

Similarly, with x, y and z instead of x1, x2 and x3, the linear equa-
tion 2x + 3y + 4z = 12 describes the plane passing through the points
(6, 0, 0), (0, 4, 0), (0, 0, 3).

A system of m linear equations in n unknowns x1, x2, · · · , xn is a family
of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We wish to determine if such a system has a solution, that is to find
out if there exist numbers x1, x2, · · · , xn which satisfy each of the equations
simultaneously. We say that the system is consistent if it has a solution.
Otherwise the system is called inconsistent.
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Note that the above system can be written concisely as

n
∑

j=1

aijxj = bi, i = 1, 2, · · · ,m.

The matrix










a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn











is called the coefficient matrix of the system, while the matrix











a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

am1 am2 · · · amn bm











is called the augmented matrix of the system.

Geometrically, solving a system of linear equations in two (or three)
unknowns is equivalent to determining whether or not a family of lines (or
planes) has a common point of intersection.

EXAMPLE 1.1.1 Solve the equation

2x+ 3y = 6.

Solution. The equation 2x + 3y = 6 is equivalent to 2x = 6 − 3y or
x = 3− 3

2y, where y is arbitrary. So there are infinitely many solutions.

EXAMPLE 1.1.2 Solve the system

x+ y + z = 1

x− y + z = 0.

Solution. We subtract the second equation from the first, to get 2y = 1
and y = 1

2 . Then x = y − z = 1
2 − z, where z is arbitrary. Again there are

infinitely many solutions.

EXAMPLE 1.1.3 Find a polynomial of the form y = a0+a1x+a2x
2+a3x

3

which passes through the points (−3, −2), (−1, 2), (1, 5), (2, 1).
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Solution. When x has the values −3, −1, 1, 2, then y takes corresponding
values −2, 2, 5, 1 and we get four equations in the unknowns a0, a1, a2, a3:

a0 − 3a1 + 9a2 − 27a3 = −2
a0 − a1 + a2 − a3 = 2

a0 + a1 + a2 + a3 = 5

a0 + 2a1 + 4a2 + 8a3 = 1.

This system has the unique solution a0 = 93/20, a1 = 221/120, a2 =
−23/20,
a3 = −41/120. So the required polynomial is

y =
93

20
+
221

120
x− 23

20
x2 − 41

120
x3.

In [26, pages 33–35] there are examples of systems of linear equations
which arise from simple electrical networks using Kirchhoff’s laws for elec-
trical circuits.

Solving a system consisting of a single linear equation is easy. However if
we are dealing with two or more equations, it is desirable to have a systematic
method of determining if the system is consistent and to find all solutions.

Instead of restricting ourselves to linear equations with rational or real
coefficients, our theory goes over to the more general case where the coef-
ficients belong to an arbitrary field. A field F is a set F which possesses
operations of addition and multiplication which satisfy the familiar rules of
rational arithmetic. There are ten basic properties that a field must have:

THE FIELD AXIOMS.

1. (a+ b) + c = a+ (b+ c) for all a, b, c in F ;

2. (ab)c = a(bc) for all a, b, c in F ;

3. a+ b = b+ a for all a, b in F ;

4. ab = ba for all a, b in F ;

5. there exists an element 0 in F such that 0 + a = a for all a in F ;

6. there exists an element 1 in F such that 1a = a for all a in F ;
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7. to every a in F , there corresponds an additive inverse −a in F , satis-
fying

a+ (−a) = 0;

8. to every non–zero a in F , there corresponds a multiplicative inverse
a−1 in F , satisfying

aa−1 = 1;

9. a(b+ c) = ab+ ac for all a, b, c in F ;

10. 0 6= 1.

With standard definitions such as a − b = a + (−b) and a

b
= ab−1 for

b 6= 0, we have the following familiar rules:

−(a+ b) = (−a) + (−b), (ab)−1 = a−1b−1;

−(−a) = a, (a−1)−1 = a;

−(a− b) = b− a, (
a

b
)−1 =

b

a
;

a

b
+
c

d
=

ad+ bc

bd
;

a

b

c

d
=

ac

bd
;

ab

ac
=

b

c
,

a
(

b
c

) =
ac

b
;

−(ab) = (−a)b = a(−b);
−
(a

b

)

=
−a
b
=

a

−b ;
0a = 0;

(−a)−1 = −(a−1).

Fields which have only finitely many elements are of great interest in
many parts of mathematics and its applications, for example to coding the-
ory. It is easy to construct fields containing exactly p elements, where p is
a prime number. First we must explain the idea of modular addition and
modular multiplication. If a is an integer, we define a (mod p) to be the
least remainder on dividing a by p: That is, if a = bp+ r, where b and r are
integers and 0 ≤ r < p, then a (mod p) = r.

For example, −1 (mod 2) = 1, 3 (mod 3) = 0, 5 (mod 3) = 2.
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Then addition and multiplication mod p are defined by

a⊕ b = (a+ b) (mod p)

a⊗ b = (ab) (mod p).

For example, with p = 7, we have 3 ⊕ 4 = 7 (mod 7) = 0 and 3 ⊗ 5 =
15 (mod 7) = 1. Here are the complete addition and multiplication tables
mod 7:

⊕ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

⊗ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

If we now let Zp = {0, 1, . . . , p− 1}, then it can be proved that Zp forms
a field under the operations of modular addition and multiplication mod p.
For example, the additive inverse of 3 in Z7 is 4, so we write −3 = 4 when
calculating in Z7. Also the multiplicative inverse of 3 in Z7 is 5 , so we write
3−1 = 5 when calculating in Z7.

In practice, we write a⊕b and a⊗b as a+b and ab or a×b when dealing
with linear equations over Zp.

The simplest field is Z2, which consists of two elements 0, 1 with addition
satisfying 1+1 = 0. So in Z2, −1 = 1 and the arithmetic involved in solving
equations over Z2 is very simple.

EXAMPLE 1.1.4 Solve the following system over Z2:

x+ y + z = 0

x+ z = 1.

Solution. We add the first equation to the second to get y = 1. Then x =
1− z = 1+ z, with z arbitrary. Hence the solutions are (x, y, z) = (1, 1, 0)
and (0, 1, 1).

We use Q and R to denote the fields of rational and real numbers, re-
spectively. Unless otherwise stated, the field used will be Q.
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1.2 Solving linear equations

We show how to solve any system of linear equations over an arbitrary field,
using the GAUSS–JORDAN algorithm. We first need to define some terms.

DEFINITION 1.2.1 (Row–echelon form) A matrix is in row–echelon
form if

(i) all zero rows (if any) are at the bottom of the matrix and

(ii) if two successive rows are non–zero, the second row starts with more
zeros than the first (moving from left to right).

For example, the matrix








0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0









is in row–echelon form, whereas the matrix








0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0









is not in row–echelon form.

The zero matrix of any size is always in row–echelon form.

DEFINITION 1.2.2 (Reduced row–echelon form) A matrix is in re-
duced row–echelon form if

1. it is in row–echelon form,

2. the leading (leftmost non–zero) entry in each non–zero row is 1,

3. all other elements of the column in which the leading entry 1 occurs
are zeros.

For example the matrices

[

1 0
0 1

]

and









0 1 2 0 0 2
0 0 0 1 0 3
0 0 0 0 1 4
0 0 0 0 0 0
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are in reduced row–echelon form, whereas the matrices





1 0 0
0 1 0
0 0 2



 and





1 2 0
0 1 0
0 0 0





are not in reduced row–echelon form, but are in row–echelon form.

The zero matrix of any size is always in reduced row–echelon form.

Notation. If a matrix is in reduced row–echelon form, it is useful to denote
the column numbers in which the leading entries 1 occur, by c1, c2, . . . , cr,
with the remaining column numbers being denoted by cr+1, . . . , cn, where
r is the number of non–zero rows. For example, in the 4× 6 matrix above,
we have r = 3, c1 = 2, c2 = 4, c3 = 5, c4 = 1, c5 = 3, c6 = 6.

The following operations are the ones used on systems of linear equations
and do not change the solutions.

DEFINITION 1.2.3 (Elementary row operations) There are three
types of elementary row operations that can be performed on matrices:

1. Interchanging two rows:

Ri ↔ Rj interchanges rows i and j.

2. Multiplying a row by a non–zero scalar:

Ri → tRi multiplies row i by the non–zero scalar t.

3. Adding a multiple of one row to another row:

Rj → Rj + tRi adds t times row i to row j.

DEFINITION 1.2.4 [Row equivalence]Matrix A is row–equivalent to ma-
trix B if B is obtained from A by a sequence of elementary row operations.

EXAMPLE 1.2.1 Working from left to right,

A =





1 2 0
2 1 1
1 −1 2



 R2 → R2 + 2R3





1 2 0
4 −1 5
1 −1 2





R2 ↔ R3





1 2 0
1 −1 2
4 −1 5



 R1 → 2R1





2 4 0
1 −1 2
4 −1 5



 = B.
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Thus A is row–equivalent to B. Clearly B is also row–equivalent to A, by
performing the inverse row–operations R1 → 1

2R1, R2 ↔ R3, R2 → R2−2R3
on B.

It is not difficult to prove that if A and B are row–equivalent augmented
matrices of two systems of linear equations, then the two systems have the
same solution sets – a solution of the one system is a solution of the other.
For example the systems whose augmented matrices are A and B in the
above example are respectively







x+ 2y = 0
2x+ y = 1
x− y = 2

and







2x+ 4y = 0
x− y = 2
4x− y = 5

and these systems have precisely the same solutions.

1.3 The Gauss–Jordan algorithm

We now describe the GAUSS–JORDAN ALGORITHM. This is a process
which starts with a given matrix A and produces a matrix B in reduced row–
echelon form, which is row–equivalent to A. If A is the augmented matrix
of a system of linear equations, then B will be a much simpler matrix than
A from which the consistency or inconsistency of the corresponding system
is immediately apparent and in fact the complete solution of the system can
be read off.

STEP 1.

Find the first non–zero column moving from left to right, (column c1)
and select a non–zero entry from this column. By interchanging rows, if
necessary, ensure that the first entry in this column is non–zero. Multiply
row 1 by the multiplicative inverse of a1c1 thereby converting a1c1 to 1. For
each non–zero element aic1 , i > 1, (if any) in column c1, add −aic1 times
row 1 to row i, thereby ensuring that all elements in column c1, apart from
the first, are zero.

STEP 2. If the matrix obtained at Step 1 has its 2nd, . . . ,mth rows all
zero, the matrix is in reduced row–echelon form. Otherwise suppose that
the first column which has a non–zero element in the rows below the first is
column c2. Then c1 < c2. By interchanging rows below the first, if necessary,
ensure that a2c2 is non–zero. Then convert a2c2 to 1 and by adding suitable
multiples of row 2 to the remaing rows, where necessary, ensure that all
remaining elements in column c2 are zero.
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The process is repeated and will eventually stop after r steps, either
because we run out of rows, or because we run out of non–zero columns. In
general, the final matrix will be in reduced row–echelon form and will have
r non–zero rows, with leading entries 1 in columns c1, . . . , cr, respectively.

EXAMPLE 1.3.1





0 0 4 0
2 2 −2 5
5 5 −1 5



 R1 ↔ R2





2 2 −2 5
0 0 4 0
5 5 −1 5





R1 → 1
2R1





1 1 −1 5
2

0 0 4 0
5 5 −1 5



 R3 → R3 − 5R1





1 1 −1 5
2

0 0 4 0
0 0 4 −152





R2 → 1
4R2





1 1 −1 5
2

0 0 1 0
0 0 4 −152





{

R1 → R1 +R2
R3 → R3 − 4R2





1 1 0 5
2

0 0 1 0
0 0 0 −152





R3 → −2
15R3





1 1 0 5
2

0 0 1 0
0 0 0 1



 R1 → R1 − 5
2R3





1 1 0 0
0 0 1 0
0 0 0 1





The last matrix is in reduced row–echelon form.

REMARK 1.3.1 It is possible to show that a given matrix over an ar-
bitrary field is row–equivalent to precisely one matrix which is in reduced
row–echelon form.

A flow–chart for the Gauss–Jordan algorithm, based on [1, page 83] is pre-
sented in figure 1.1 below.

1.4 Systematic solution of linear systems.

Suppose a system of m linear equations in n unknowns x1, · · · , xn has aug-
mented matrix A and that A is row–equivalent to a matrix B which is in
reduced row–echelon form, via the Gauss–Jordan algorithm. Then A and B
are m× (n+ 1). Suppose that B has r non–zero rows and that the leading
entry 1 in row i occurs in column number ci, for 1 ≤ i ≤ r. Then

1 ≤ c1 < c2 < · · · , < cr ≤ n+ 1.
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Figure 1.1: Gauss–Jordan algorithm.
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Also assume that the remaining column numbers are cr+1, · · · , cn+1, where
1 ≤ cr+1 < cr+2 < · · · < cn ≤ n+ 1.

Case 1: cr = n + 1. The system is inconsistent. For the last non–zero
row of B is [0, 0, · · · , 1] and the corresponding equation is

0x1 + 0x2 + · · ·+ 0xn = 1,
which has no solutions. Consequently the original system has no solutions.

Case 2: cr ≤ n. The system of equations corresponding to the non–zero
rows of B is consistent. First notice that r ≤ n here.
If r = n, then c1 = 1, c2 = 2, · · · , cn = n and

B =

























1 0 · · · 0 d1
0 1 · · · 0 d2
...

...
0 0 · · · 1 dn
0 0 · · · 0 0
...

...
0 0 · · · 0 0

























.

There is a unique solution x1 = d1, x2 = d2, · · · , xn = dn.

If r < n, there will be more than one solution (infinitely many if the
field is infinite). For all solutions are obtained by taking the unknowns
xc1 , · · · , xcr as dependent unknowns and using the r equations correspond-
ing to the non–zero rows of B to express these unknowns in terms of the
remaining independent unknowns xcr+1 , . . . , xcn , which can take on arbi-
trary values:

xc1 = b1n+1 − b1cr+1xcr+1 − · · · − b1cnxcn
...

xcr = br n+1 − brcr+1xcr+1 − · · · − brcnxcn .
In particular, taking xcr+1 = 0, . . . , xcn−1 = 0 and xcn = 0, 1 respectively,
produces at least two solutions.

EXAMPLE 1.4.1 Solve the system

x+ y = 0

x− y = 1

4x+ 2y = 1.
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Solution. The augmented matrix of the system is

A =





1 1 0
1 −1 1
4 2 1





which is row equivalent to

B =





1 0 1
2

0 1 −12
0 0 0



 .

We read off the unique solution x = 1
2 , y = −12 .

(Here n = 2, r = 2, c1 = 1, c2 = 2. Also cr = c2 = 2 < 3 = n + 1 and
r = n.)

EXAMPLE 1.4.2 Solve the system

2x1 + 2x2 − 2x3 = 5
7x1 + 7x2 + x3 = 10
5x1 + 5x2 − x3 = 5.

Solution. The augmented matrix is

A =





2 2 −2 5
7 7 1 10
5 5 −1 5





which is row equivalent to

B =





1 1 0 0
0 0 1 0
0 0 0 1



 .

We read off inconsistency for the original system.
(Here n = 3, r = 3, c1 = 1, c2 = 3. Also cr = c3 = 4 = n+ 1.)

EXAMPLE 1.4.3 Solve the system

x1 − x2 + x3 = 1

x1 + x2 − x3 = 2.



1.4. SYSTEMATIC SOLUTION OF LINEAR SYSTEMS. 13

Solution. The augmented matrix is

A =

[

1 −1 1 1
1 1 −1 2

]

which is row equivalent to

B =

[

1 0 0 3
2

0 1 −1 1
2

]

.

The complete solution is x1 =
3
2 , x2 =

1
2 + x3, with x3 arbitrary.

(Here n = 3, r = 2, c1 = 1, c2 = 2. Also cr = c2 = 2 < 4 = n + 1 and
r < n.)

EXAMPLE 1.4.4 Solve the system

6x3 + 2x4 − 4x5 − 8x6 = 8

3x3 + x4 − 2x5 − 4x6 = 4

2x1 − 3x2 + x3 + 4x4 − 7x5 + x6 = 2

6x1 − 9x2 + 11x4 − 19x5 + 3x6 = 1.

Solution. The augmented matrix is

A =









0 0 6 2 −4 −8 8
0 0 3 1 −2 −4 4
2 −3 1 4 −7 1 2
6 −9 0 11 −19 3 1









which is row equivalent to

B =









1 −32 0 11
6 −196 0 1

24
0 0 1 1

3 −23 0 5
3

0 0 0 0 0 1 1
4

0 0 0 0 0 0 0









.

The complete solution is

x1 =
1
24 +

3
2x2 − 11

6 x4 +
19
6 x5,

x3 =
5
3 − 1

3x4 +
2
3x5,

x6 =
1
4 ,

with x2, x4, x5 arbitrary.
(Here n = 6, r = 3, c1 = 1, c2 = 3, c3 = 6; cr = c3 = 6 < 7 = n+ 1; r < n.)
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EXAMPLE 1.4.5 Find the rational number t for which the following sys-
tem is consistent and solve the system for this value of t.

x+ y = 2

x− y = 0

3x− y = t.

Solution. The augmented matrix of the system is

A =





1 1 2
1 −1 0
3 −1 t





which is row–equivalent to the simpler matrix

B =





1 1 2
0 1 1
0 0 t− 2



 .

Hence if t 6= 2 the system is inconsistent. If t = 2 the system is consistent
and

B =





1 1 2
0 1 1
0 0 0



→





1 0 1
0 1 1
0 0 0



 .

We read off the solution x = 1, y = 1.

EXAMPLE 1.4.6 For which rationals a and b does the following system
have (i) no solution, (ii) a unique solution, (iii) infinitely many solutions?

x− 2y + 3z = 4

2x− 3y + az = 5

3x− 4y + 5z = b.

Solution. The augmented matrix of the system is

A =





1 −2 3 4
2 −3 a 5
3 −4 5 b
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{

R2 → R2 − 2R1
R3 → R3 − 3R1





1 −2 3 4
0 1 a− 6 −3
0 2 −4 b− 12





R3 → R3 − 2R2





1 −2 3 4
0 1 a− 6 −3
0 0 −2a+ 8 b− 6



 = B.

Case 1. a 6= 4. Then −2a+ 8 6= 0 and we see that B can be reduced to
a matrix of the form





1 0 0 u
0 1 0 v

0 0 1 b−6
−2a+8





and we have the unique solution x = u, y = v, z = (b− 6)/(−2a+ 8).
Case 2. a = 4. Then

B =





1 −2 3 4
0 1 −2 −3
0 0 0 b− 6



 .

If b 6= 6 we get no solution, whereas if b = 6 then

B =





1 −2 3 4
0 1 −2 −3
0 0 0 0



 R1 → R1 + 2R2





1 0 −1 −2
0 1 −2 −3
0 0 0 0



. We

read off the complete solution x = −2 + z, y = −3 + 2z, with z arbitrary.

EXAMPLE 1.4.7 Find the reduced row–echelon form of the following ma-
trix over Z3:

[

2 1 2 1
2 2 1 0

]

.

Hence solve the system

2x+ y + 2z = 1

2x+ 2y + z = 0

over Z3.

Solution.
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[

2 1 2 1
2 2 1 0

]

R2 → R2 −R1
[

2 1 2 1
0 1 −1 −1

]

=

[

2 1 2 1
0 1 2 2

]

R1 → 2R1

[

1 2 1 2
0 1 2 2

]

R1 → R1 +R2

[

1 0 0 1
0 1 2 2

]

.

The last matrix is in reduced row–echelon form.
To solve the system of equations whose augmented matrix is the given

matrix over Z3, we see from the reduced row–echelon form that x = 1 and
y = 2 − 2z = 2 + z, where z = 0, 1, 2. Hence there are three solutions
to the given system of linear equations: (x, y, z) = (1, 2, 0), (1, 0, 1) and
(1, 1, 2).

1.5 Homogeneous systems

A system of homogeneous linear equations is a system of the form

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
...

am1x1 + am2x2 + · · ·+ amnxn = 0.

Such a system is always consistent as x1 = 0, · · · , xn = 0 is a solution.
This solution is called the trivial solution. Any other solution is called a
non–trivial solution.
For example the homogeneous system

x− y = 0

x+ y = 0

has only the trivial solution, whereas the homogeneous system

x− y + z = 0

x+ y + z = 0

has the complete solution x = −z, y = 0, z arbitrary. In particular, taking
z = 1 gives the non–trivial solution x = −1, y = 0, z = 1.
There is simple but fundamental theorem concerning homogeneous sys-

tems.

THEOREM 1.5.1 A homogeneous system of m linear equations in n un-
knowns always has a non–trivial solution if m < n.
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Proof. Suppose that m < n and that the coefficient matrix of the system
is row–equivalent to B, a matrix in reduced row–echelon form. Let r be the
number of non–zero rows in B. Then r ≤ m < n and hence n − r > 0 and
so the number n − r of arbitrary unknowns is in fact positive. Taking one
of these unknowns to be 1 gives a non–trivial solution.

REMARK 1.5.1 Let two systems of homogeneous equations in n un-
knowns have coefficient matrices A and B, respectively. If each row of B is
a linear combination of the rows of A (i.e. a sum of multiples of the rows
of A) and each row of A is a linear combination of the rows of B, then it is
easy to prove that the two systems have identical solutions. The converse is
true, but is not easy to prove. Similarly if A and B have the same reduced
row–echelon form, apart from possibly zero rows, then the two systems have
identical solutions and conversely.
There is a similar situation in the case of two systems of linear equations

(not necessarily homogeneous), with the proviso that in the statement of
the converse, the extra condition that both the systems are consistent, is
needed.

1.6 PROBLEMS

1. Which of the following matrices of rationals is in reduced row–echelon
form?

(a)





1 0 0 0 −3
0 0 1 0 4
0 0 0 1 2



 (b)





0 1 0 0 5
0 0 1 0 −4
0 0 0 −1 3



 (c)





0 1 0 0
0 0 1 0
0 1 0 −2





(d)









0 1 0 0 2
0 0 0 0 −1
0 0 0 1 4
0 0 0 0 0









(e)









1 2 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0









(f)









0 0 0 0
0 0 1 2
0 0 0 1
0 0 0 0









(g)









1 0 0 0 1
0 1 0 0 2
0 0 0 1 −1
0 0 0 0 0









. [Answers: (a), (e), (g)]

2. Find reduced row–echelon forms which are row–equivalent to the following
matrices:

(a)

[

0 0 0
2 4 0

]

(b)

[

0 1 3
1 2 4

]

(c)





1 1 1
1 1 0
1 0 0



 (d)





2 0 0
0 0 0

−4 0 0



 .
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[Answers:

(a)

[

1 2 0
0 0 0

]

(b)

[

1 0 −2
0 1 3

]

(c)





1 0 0
0 1 0
0 0 1



 (d)





1 0 0
0 0 0
0 0 0



.]

3. Solve the following systems of linear equations by reducing the augmented
matrix to reduced row–echelon form:

(a) x+ y + z = 2 (b) x1 + x2 − x3 + 2x4 = 10
2x+ 3y − z = 8 3x1 − x2 + 7x3 + 4x4 = 1
x− y − z = −8 −5x1 + 3x2 − 15x3 − 6x4 = 9

(c) 3x− y + 7z = 0 (d) 2x2 + 3x3 − 4x4 = 1
2x− y + 4z = 1

2 2x3 + 3x4 = 4
x− y + z = 1 2x1 + 2x2 − 5x3 + 2x4 = 4

6x− 4y + 10z = 3 2x1 − 6x3 + 9x4 = 7

[Answers: (a) x = −3, y = 19
4 , z =

1
4 ; (b) inconsistent;

(c) x = −12 − 3z, y = −32 − 2z, with z arbitrary;
(d) x1 =

19
2 − 9x4, x2 = −52 + 17

4 x4, x3 = 2− 3
2x4, with x4 arbitrary.]

4. Show that the following system is consistent if and only if c = 2a − 3b
and solve the system in this case.

2x− y + 3z = a

3x+ y − 5z = b

−5x− 5y + 21z = c.

[Answer: x = a+b
5 +

2
5z, y =

−3a+2b
5 + 19

5 z, with z arbitrary.]

5. Find the value of t for which the following system is consistent and solve
the system for this value of t.

x+ y = 1

tx+ y = t

(1 + t)x+ 2y = 3.

[Answer: t = 2; x = 1, y = 0.]
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6. Solve the homogeneous system

−3x1 + x2 + x3 + x4 = 0

x1 − 3x2 + x3 + x4 = 0

x1 + x2 − 3x3 + x4 = 0

x1 + x2 + x3 − 3x4 = 0.

[Answer: x1 = x2 = x3 = x4, with x4 arbitrary.]

7. For which rational numbers λ does the homogeneous system

x+ (λ− 3)y = 0

(λ− 3)x+ y = 0

have a non–trivial solution?

[Answer: λ = 2, 4.]

8. Solve the homogeneous system

3x1 + x2 + x3 + x4 = 0

5x1 − x2 + x3 − x4 = 0.

[Answer: x1 = −14x3, x2 = −14x3 − x4, with x3 and x4 arbitrary.]
9. Let A be the coefficient matrix of the following homogeneous system of
n equations in n unknowns:

(1− n)x1 + x2 + · · ·+ xn = 0

x1 + (1− n)x2 + · · ·+ xn = 0

· · · = 0

x1 + x2 + · · ·+ (1− n)xn = 0.

Find the reduced row–echelon form of A and hence, or otherwise, prove that
the solution of the above system is x1 = x2 = · · · = xn, with xn arbitrary.

10. Let A =

[

a b
c d

]

be a matrix over a field F . Prove that A is row–

equivalent to

[

1 0
0 1

]

if ad − bc 6= 0, but is row–equivalent to a matrix
whose second row is zero, if ad− bc = 0.



20 CHAPTER 1. LINEAR EQUATIONS

11. For which rational numbers a does the following system have (i) no
solutions (ii) exactly one solution (iii) infinitely many solutions?

x+ 2y − 3z = 4

3x− y + 5z = 2

4x+ y + (a2 − 14)z = a+ 2.

[Answer: a = −4, no solution; a = 4, infinitely many solutions; a 6= ±4,
exactly one solution.]

12. Solve the following system of homogeneous equations over Z2:

x1 + x3 + x5 = 0

x2 + x4 + x5 = 0

x1 + x2 + x3 + x4 = 0

x3 + x4 = 0.

[Answer: x1 = x2 = x4 + x5, x3 = x4, with x4 and x5 arbitrary elements of
Z2.]

13. Solve the following systems of linear equations over Z5:

(a) 2x+ y + 3z = 4 (b) 2x+ y + 3z = 4
4x+ y + 4z = 1 4x+ y + 4z = 1
3x+ y + 2z = 0 x+ y = 3.

[Answer: (a) x = 1, y = 2, z = 0; (b) x = 1 + 2z, y = 2 + 3z, with z an
arbitrary element of Z5.]

14. If (α1, . . . , αn) and (β1, . . . , βn) are solutions of a system of linear equa-
tions, prove that

((1− t)α1 + tβ1, . . . , (1− t)αn + tβn)

is also a solution.

15. If (α1, . . . , αn) is a solution of a system of linear equations, prove that
the complete solution is given by x1 = α1 + y1, . . . , xn = αn + yn, where
(y1, . . . , yn) is the general solution of the associated homogeneous system.
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16. Find the values of a and b for which the following system is consistent.
Also find the complete solution when a = b = 2.

x+ y − z + w = 1

ax+ y + z + w = b

3x+ 2y + aw = 1 + a.

[Answer: a 6= 2 or a = 2 = b; x = 1− 2z, y = 3z − w, with z, w arbitrary.]
17. Let F = {0, 1, a, b} be a field consisting of 4 elements.

(a) Determine the addition and multiplication tables of F . (Hint: Prove
that the elements 1+0, 1+1, 1+a, 1+ b are distinct and deduce that
1 + 1 + 1 + 1 = 0; then deduce that 1 + 1 = 0.)

(b) A matrix A, whose elements belong to F , is defined by

A =





1 a b a
a b b 1
1 1 1 a



 ,

prove that the reduced row–echelon form of A is given by the matrix

B =





1 0 0 0
0 1 0 b
0 0 1 1



 .



22 CHAPTER 1. LINEAR EQUATIONS



Chapter 2

MATRICES

2.1 Matrix arithmetic

A matrix over a field F is a rectangular array of elements from F . The sym-
bol Mm×n(F ) denotes the collection of all m× n matrices over F . Matrices
will usually be denoted by capital letters and the equation A = [aij ] means
that the element in the i–th row and j–th column of the matrix A equals
aij . It is also occasionally convenient to write aij = (A)ij . For the present,
all matrices will have rational entries, unless otherwise stated.

EXAMPLE 2.1.1 The formula aij = 1/(i + j) for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4
defines a 3× 4 matrix A = [aij ], namely

A =













1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7













.

DEFINITION 2.1.1 (Equality of matrices) MatricesA andB are said
to be equal if A and B have the same size and corresponding elements are
equal; that is A and B ∈ Mm×n(F ) and A = [aij ], B = [bij ], with aij = bij
for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

DEFINITION 2.1.2 (Addition of matrices) Let A = [aij ] and B =
[bij ] be of the same size. Then A + B is the matrix obtained by adding
corresponding elements of A and B; that is

A+B = [aij ] + [bij ] = [aij + bij ].

23
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DEFINITION 2.1.3 (Scalar multiple of a matrix) Let A = [aij ] and
t ∈ F (that is t is a scalar). Then tA is the matrix obtained by multiplying
all elements of A by t; that is

tA = t[aij ] = [taij ].

DEFINITION 2.1.4 (Additive inverse of a matrix) Let A = [aij ] .
Then −A is the matrix obtained by replacing the elements of A by their
additive inverses; that is

−A = −[aij ] = [−aij ].

DEFINITION 2.1.5 (Subtraction of matrices) Matrix subtraction is
defined for two matrices A = [aij ] and B = [bij ] of the same size, in the
usual way; that is

A−B = [aij ]− [bij ] = [aij − bij ].

DEFINITION 2.1.6 (The zero matrix) For each m, n the matrix in
Mm×n(F ), all of whose elements are zero, is called the zero matrix (of size
m× n) and is denoted by the symbol 0.

The matrix operations of addition, scalar multiplication, additive inverse
and subtraction satisfy the usual laws of arithmetic. (In what follows, s and
t will be arbitrary scalars and A, B, C are matrices of the same size.)

1. (A+B) + C = A+ (B + C);

2. A+B = B +A;

3. 0 +A = A;

4. A+ (−A) = 0;

5. (s+ t)A = sA+ tA, (s− t)A = sA− tA;

6. t(A+B) = tA+ tB, t(A−B) = tA− tB;

7. s(tA) = (st)A;

8. 1A = A, 0A = 0, (−1)A = −A;

9. tA = 0⇒ t = 0 or A = 0.

Other similar properties will be used when needed.
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DEFINITION 2.1.7 (Matrix product) Let A = [aij ] be a matrix of
size m × n and B = [bjk] be a matrix of size n × p; (that is the number
of columns of A equals the number of rows of B). Then AB is the m × p
matrix C = [cik] whose (i, k)–th element is defined by the formula

cik =
n
∑

j=1

aijbjk = ai1b1k + · · ·+ ainbnk.

EXAMPLE 2.1.2

1.

[

1 2
3 4

] [

5 6
7 8

]

=

[

1× 5 + 2× 7 1× 6 + 2× 8
3× 5 + 4× 7 3× 6 + 4× 8

]

=

[

19 22
43 50

]

;

2.

[

5 6
7 8

] [

1 2
3 4

]

=

[

23 34
31 46

]

6=
[

1 2
3 4

] [

5 6
7 8

]

;

3.

[

1
2

]

[

3 4
]

=

[

3 4
6 8

]

;

4.
[

3 4
]

[

1
2

]

=
[

11
]

;

5.

[

1 −1
1 −1

] [

1 −1
1 −1

]

=

[

0 0
0 0

]

.

Matrix multiplication obeys many of the familiar laws of arithmetic apart
from the commutative law.

1. (AB)C = A(BC) if A, B, C are m× n, n× p, p× q, respectively;
2. t(AB) = (tA)B = A(tB), A(−B) = (−A)B = −(AB);
3. (A+B)C = AC +BC if A and B are m× n and C is n× p;
4. D(A+B) = DA+DB if A and B are m× n and D is p×m.
We prove the associative law only:

First observe that (AB)C and A(BC) are both of size m× q.
Let A = [aij ], B = [bjk], C = [ckl]. Then

((AB)C)il =

p
∑

k=1

(AB)ikckl =

p
∑

k=1





n
∑

j=1

aijbjk



 ckl

=

p
∑

k=1

n
∑

j=1

aijbjkckl.
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Similarly

(A(BC))il =
n
∑

j=1

p
∑

k=1

aijbjkckl.

However the double summations are equal. For sums of the form

n
∑

j=1

p
∑

k=1

djk and

p
∑

k=1

n
∑

j=1

djk

represent the sum of the np elements of the rectangular array [djk], by rows
and by columns, respectively. Consequently

((AB)C)il = (A(BC))il

for 1 ≤ i ≤ m, 1 ≤ l ≤ q. Hence (AB)C = A(BC).

The system of m linear equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

is equivalent to a single matrix equation










a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn





















x1
x2
...

xn











=











b1
b2
...

bm











,

that is AX = B, where A = [aij ] is the coefficient matrix of the system,

X =











x1
x2
...
xn











is the vector of unknowns and B =











b1
b2
...
bm











is the vector of

constants.
Another useful matrix equation equivalent to the above system of linear

equations is

x1











a11
a21
...

am1











+ x2











a12
a22
...

am2











+ · · ·+ xn











a1n
a2n
...

amn











=











b1
b2
...
bm











.
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EXAMPLE 2.1.3 The system

x+ y + z = 1

x− y + z = 0.

is equivalent to the matrix equation

[

1 1 1
1 −1 1

]





x
y
z



 =

[

1
0

]

and to the equation

x

[

1
1

]

+ y

[

1
−1

]

+ z

[

1
1

]

=

[

1
0

]

.

2.2 Linear transformations

An n–dimensional column vector is an n× 1 matrix over F . The collection
of all n–dimensional column vectors is denoted by F n.
Every matrix is associated with an important type of function called a

linear transformation.

DEFINITION 2.2.1 (Linear transformation) WithA ∈Mm×n(F ), we
associate the function TA : F

n → Fm defined by TA(X) = AX for all
X ∈ Fn. More explicitly, using components, the above function takes the
form

y1 = a11x1 + a12x2 + · · ·+ a1nxn
y2 = a21x1 + a22x2 + · · ·+ a2nxn

...

ym = am1x1 + am2x2 + · · ·+ amnxn,

where y1, y2, · · · , ym are the components of the column vector TA(X).

The function just defined has the property that

TA(sX + tY ) = sTA(X) + tTA(Y ) (2.1)

for all s, t ∈ F and all n–dimensional column vectors X, Y . For

TA(sX + tY ) = A(sX + tY ) = s(AX) + t(AY ) = sTA(X) + tTA(Y ).
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REMARK 2.2.1 It is easy to prove that if T : F n → Fm is a function
satisfying equation 2.1, then T = TA, where A is the m × n matrix whose
columns are T (E1), . . . , T (En), respectively, where E1, . . . , En are the n–
dimensional unit vectors defined by

E1 =











1
0
...
0











, . . . , En =











0
0
...
1











.

One well–known example of a linear transformation arises from rotating
the (x, y)–plane in 2-dimensional Euclidean space, anticlockwise through θ
radians. Here a point (x, y) will be transformed into the point (x1, y1),
where

x1 = x cos θ − y sin θ
y1 = x sin θ + y cos θ.

In 3–dimensional Euclidean space, the equations

x1 = x cos θ − y sin θ, y1 = x sin θ + y cos θ, z1 = z;

x1 = x, y1 = y cosφ− z sinφ, z1 = y sinφ+ z cosφ;

x1 = x cosψ − z sinψ, y1 = y, z1 = x sinψ + z cosψ;

correspond to rotations about the positive z, x, y–axes, anticlockwise through
θ, φ, ψ radians, respectively.

The product of two matrices is related to the product of the correspond-
ing linear transformations:

If A ism×n and B is n×p, then the function TATB : F p → Fm, obtained
by first performing TB, then TA is in fact equal to the linear transformation
TAB. For if X ∈ F p, we have

TATB(X) = A(BX) = (AB)X = TAB(X).

The following example is useful for producing rotations in 3–dimensional
animated design. (See [27, pages 97–112].)

EXAMPLE 2.2.1 The linear transformation resulting from successively
rotating 3–dimensional space about the positive z, x, y–axes, anticlockwise
through θ, φ, ψ radians respectively, is equal to TABC , where
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θ

l

(x, y)

(x1, y1)

¡
¡
¡
¡
¡
¡
¡
¡

¡
¡

¡
¡

¡

@
@

@@

@
@
@

Figure 2.1: Reflection in a line.

C =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



, B =





1 0 0
0 cosφ − sinφ
0 sinφ cosφ



.

A =





cosψ 0 − sinψ
0 1 0
sinψ 0 cosψ



.

The matrix ABC is quite complicated:

A(BC) =





cosψ 0 − sinψ
0 1 0
sinψ 0 cosψ









cos θ − sin θ 0
cosφ sin θ cosφ cos θ − sinφ
sinφ sin θ sinφ cos θ cosφ





=





cosψ cos θ − sinψ sinφ sin θ − cosψ sin θ − sinψ sinφ sin θ − sinψ cosφ
cosφ sin θ cosφ cos θ − sinφ

sinψ cos θ + cosψ sinφ sin θ − sinψ sin θ + cosψ sinφ cos θ cosψ cosφ



.

EXAMPLE 2.2.2 Another example of a linear transformation arising from
geometry is reflection of the plane in a line l inclined at an angle θ to the
positive x–axis.

We reduce the problem to the simpler case θ = 0, where the equations
of transformation are x1 = x, y1 = −y. First rotate the plane clockwise
through θ radians, thereby taking l into the x–axis; next reflect the plane in
the x–axis; then rotate the plane anticlockwise through θ radians, thereby
restoring l to its original position.
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θ
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Figure 2.2: Projection on a line.

In terms of matrices, we get transformation equations

[

x1
y1

]

=

[

cos θ − sin θ
sin θ cos θ

] [

1 0
0 −1

] [

cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

] [

x
y

]

=

[

cos θ sin θ
sin θ − cos θ

] [

cos θ sin θ
− sin θ cos θ

] [

x
y

]

=

[

cos 2θ sin 2θ
sin 2θ − cos 2θ

] [

x
y

]

.

The more general transformation

[

x1
y1

]

= a

[

cos θ − sin θ
sin θ cos θ

] [

x
y

]

+

[

u
v

]

, a > 0,

represents a rotation, followed by a scaling and then by a translation. Such
transformations are important in computer graphics. See [23, 24].

EXAMPLE 2.2.3 Our last example of a geometrical linear transformation
arises from projecting the plane onto a line l through the origin, inclined
at angle θ to the positive x–axis. Again we reduce that problem to the
simpler case where l is the x–axis and the equations of transformation are
x1 = x, y1 = 0.
In terms of matrices, we get transformation equations

[

x1
y1

]

=

[

cos θ − sin θ
sin θ cos θ

] [

1 0
0 0

] [

cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

] [

x
y

]
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=

[

cos θ 0
sin θ 0

] [

cos θ sin θ
− sin θ cos θ

] [

x
y

]

=

[

cos2 θ cos θ sin θ
sin θ cos θ sin2 θ

] [

x
y

]

.

2.3 Recurrence relations

DEFINITION 2.3.1 (The identity matrix) The n × n matrix In =
[δij ], defined by δij = 1 if i = j, δij = 0 if i 6= j, is called the n× n identity
matrix of order n. In other words, the columns of the identity matrix of
order n are the unit vectors E1, · · · , En, respectively.

For example, I2 =

[

1 0
0 1

]

.

THEOREM 2.3.1 If A is m× n, then ImA = A = AIn.

DEFINITION 2.3.2 (k–th power of a matrix) If A is an n×nmatrix,
we define Ak recursively as follows: A0 = In and A

k+1 = AkA for k ≥ 0.

For example A1 = A0A = InA = A and hence A2 = A1A = AA.

The usual index laws hold provided AB = BA:

1. AmAn = Am+n, (Am)n = Amn;

2. (AB)n = AnBn;

3. AmBn = BnAm;

4. (A+B)2 = A2 + 2AB +B2;

5. (A+B)n =
n
∑

i=0

(

n
i

)

AiBn−i;

6. (A+B)(A−B) = A2 −B2.

We now state a basic property of the natural numbers.

AXIOM 2.3.1 (PRINCIPLE OF MATHEMATICAL INDUCTION)
If for each n ≥ 1, Pn denotes a mathematical statement and

(i) P1 is true,
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(ii) the truth of Pn implies that of Pn+1 for each n ≥ 1,

then Pn is true for all n ≥ 1.

EXAMPLE 2.3.1 Let A =

[

7 4
−9 −5

]

. Prove that

An =

[

1 + 6n 4n
−9n 1− 6n

]

if n ≥ 1.

Solution. We use the principle of mathematical induction.

Take Pn to be the statement

An =

[

1 + 6n 4n
−9n 1− 6n

]

.

Then P1 asserts that

A1 =

[

1 + 6× 1 4× 1
−9× 1 1− 6× 1

]

=

[

7 4
−9 −5

]

,

which is true. Now let n ≥ 1 and assume that Pn is true. We have to deduce
that

An+1 =

[

1 + 6(n+ 1) 4(n+ 1)
−9(n+ 1) 1− 6(n+ 1)

]

=

[

7 + 6n 4n+ 4
−9n− 9 −5− 6n

]

.

Now

An+1 = AnA

=

[

1 + 6n 4n
−9n 1− 6n

] [

7 4
−9 −5

]

=

[

(1 + 6n)7 + (4n)(−9) (1 + 6n)4 + (4n)(−5)
(−9n)7 + (1− 6n)(−9) (−9n)4 + (1− 6n)(−5)

]

=

[

7 + 6n 4n+ 4
−9n− 9 −5− 6n

]

,

and “the induction goes through”.

The last example has an application to the solution of a system of re-
currence relations:
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EXAMPLE 2.3.2 The following system of recurrence relations holds for
all n ≥ 0:

xn+1 = 7xn + 4yn

yn+1 = −9xn − 5yn.

Solve the system for xn and yn in terms of x0 and y0.

Solution. Combine the above equations into a single matrix equation
[

xn+1
yn+1

]

=

[

7 4
−9 −5

] [

xn
yn

]

,

or Xn+1 = AXn, where A =

[

7 4
−9 −5

]

and Xn =

[

xn
yn

]

.

We see that

X1 = AX0

X2 = AX1 = A(AX0) = A2X0
...

Xn = AnX0.

(The truth of the equation Xn = AnX0 for n ≥ 1, strictly speaking
follows by mathematical induction; however for simple cases such as the
above, it is customary to omit the strict proof and supply instead a few
lines of motivation for the inductive statement.)
Hence the previous example gives

[

xn
yn

]

= Xn =

[

1 + 6n 4n
−9n 1− 6n

] [

x0
y0

]

=

[

(1 + 6n)x0 + (4n)y0
(−9n)x0 + (1− 6n)y0

]

,

and hence xn = (1+6n)x0+4ny0 and yn = (−9n)x0+(1−6n)y0, for n ≥ 1.

2.4 PROBLEMS

1. Let A, B, C, D be matrices defined by

A =





3 0
−1 2
1 1



 , B =





1 5 2
−1 1 0
−4 1 3



 ,
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C =





−3 −1
2 1
4 3



 , D =

[

4 −1
2 0

]

.

Which of the following matrices are defined? Compute those matrices
which are defined.

A+B, A+ C, AB, BA, CD, DC, D2.

[Answers: A+ C, BA, CD, D2;





0 −1
1 3
5 4



 ,





0 12
−4 2
−10 5



,





−14 3
10 −2
22 −4



,

[

14 −4
8 −2

]

.]

2. Let A =

[

−1 0 1
0 1 1

]

. Show that if B is a 3× 2 such that AB = I2,

then

B =





a b
−a− 1 1− b
a+ 1 b





for suitable numbers a and b. Use the associative law to show that
(BA)2B = B.

3. If A =

[

a b
c d

]

, prove that A2 − (a+ d)A+ (ad− bc)I2 = 0.

4. If A =

[

4 −3
1 0

]

, use the fact A2 = 4A − 3I2 and mathematical
induction, to prove that

An =
(3n − 1)
2

A+
3− 3n
2

I2 if n ≥ 1.

5. A sequence of numbers x1, x2, . . . , xn, . . . satisfies the recurrence rela-
tion xn+1 = axn+bxn−1 for n ≥ 1, where a and b are constants. Prove
that

[

xn+1
xn

]

= A

[

xn
xn−1

]

,
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where A =

[

a b
1 0

]

and hence express

[

xn+1
xn

]

in terms of

[

x1
x0

]

.

If a = 4 and b = −3, use the previous question to find a formula for
xn in terms of x1 and x0.

[Answer:

xn =
3n − 1
2

x1 +
3− 3n
2

x0.]

6. Let A =

[

2a −a2
1 0

]

.

(a) Prove that

An =

[

(n+ 1)an −nan+1
nan−1 (1− n)an

]

if n ≥ 1.

(b) A sequence x0, x1, . . . , xn, . . . satisfies the recurrence relation xn+1 =
2axn− a2xn−1 for n ≥ 1. Use part (a) and the previous question
to prove that xn = nan−1x1 + (1− n)anx0 for n ≥ 1.

7. Let A =

[

a b
c d

]

and suppose that λ1 and λ2 are the roots of the

quadratic polynomial x2−(a+d)x+ad−bc. (λ1 and λ2 may be equal.)
Let kn be defined by k0 = 0, k1 = 1 and for n ≥ 2

kn =
n
∑

i=1

λn−i1 λi−12 .

Prove that
kn+1 = (λ1 + λ2)kn − λ1λ2kn−1,

if n ≥ 1. Also prove that

kn =

{

(λn1 − λn2 )/(λ1 − λ2) if λ1 6= λ2,

nλn−11 if λ1 = λ2.

Use mathematical induction to prove that if n ≥ 1,

An = knA− λ1λ2kn−1I2,

[Hint: Use the equation A2 = (a+ d)A− (ad− bc)I2.]
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8. Use Question 6 to prove that if A =

[

1 2
2 1

]

, then

An =
3n

2

[

1 1
1 1

]

+
(−1)n−1
2

[

−1 1
1 −1

]

if n ≥ 1.

9. The Fibonacci numbers are defined by the equations F0 = 0, F1 = 1
and Fn+1 = Fn + Fn−1 if n ≥ 1. Prove that

Fn =
1√
5

((

1 +
√
5

2

)n

−
(

1−
√
5

2

)n)

if n ≥ 0.

10. Let r > 1 be an integer. Let a and b be arbitrary positive integers.
Sequences xn and yn of positive integers are defined in terms of a and
b by the recurrence relations

xn+1 = xn + ryn

yn+1 = xn + yn,

for n ≥ 0, where x0 = a and y0 = b.

Use Question 6 to prove that

xn
yn
→ √

r as n→∞.

2.5 Non–singular matrices

DEFINITION 2.5.1 (Non–singular matrix)

A square matrix A ∈ Mn×n(F ) is called non–singular or invertible if
there exists a matrix B ∈Mn×n(F ) such that

AB = In = BA.

Any matrix B with the above property is called an inverse of A. If A does
not have an inverse, A is called singular.
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THEOREM 2.5.1 (Inverses are unique)

If A has inverses B and C, then B = C.

Proof. Let B and C be inverses of A. Then AB = In = BA and AC =
In = CA. Then B(AC) = BIn = B and (BA)C = InC = C. Hence because
B(AC) = (BA)C, we deduce that B = C.

REMARK 2.5.1 If A has an inverse, it is denoted by A−1. So

AA−1 = In = A−1A.

Also if A is non–singular, it follows that A−1 is also non–singular and

(A−1)−1 = A.

THEOREM 2.5.2 If A and B are non–singular matrices of the same size,
then so is AB. Moreover

(AB)−1 = B−1A−1.

Proof.

(AB)(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In.

Similarly
(B−1A−1)(AB) = In.

REMARK 2.5.2 The above result generalizes to a product of m non–
singular matrices: If A1, . . . , Am are non–singular n× n matrices, then the
product A1 . . . Am is also non–singular. Moreover

(A1 . . . Am)
−1 = A−1m . . . A−11 .

(Thus the inverse of the product equals the product of the inverses in the
reverse order.)

EXAMPLE 2.5.1 If A and B are n × n matrices satisfying A2 = B2 =
(AB)2 = In, prove that AB = BA.

Solution. Assume A2 = B2 = (AB)2 = In. Then A, B, AB are non–
singular and A−1 = A, B−1 = B, (AB)−1 = AB.
But (AB)−1 = B−1A−1 and hence AB = BA.
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EXAMPLE 2.5.2 A =

[

1 2
4 8

]

is singular. For suppose B =

[

a b
c d

]

is an inverse of A. Then the equation AB = I2 gives

[

1 2
4 8

] [

a b
c d

]

=

[

1 0
0 1

]

and equating the corresponding elements of column 1 of both sides gives the
system

a+ 2c = 1

4a+ 8c = 0

which is clearly inconsistent.

THEOREM 2.5.3 Let A =

[

a b
c d

]

and ∆ = ad − bc 6= 0. Then A is
non–singular. Also

A−1 = ∆−1
[

d −b
−c a

]

.

REMARK 2.5.3 The expression ad − bc is called the determinant of A

and is denoted by the symbols detA or

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

.

Proof. Verify that the matrix B = ∆−1
[

d −b
−c a

]

satisfies the equation

AB = I2 = BA.

EXAMPLE 2.5.3 Let

A =





0 1 0
0 0 1
5 0 0



 .

Verify that A3 = 5I3, deduce that A is non–singular and find A
−1.

Solution. After verifying that A3 = 5I3, we notice that

A

(

1

5
A2
)

= I3 =

(

1

5
A2
)

A.

Hence A is non–singular and A−1 = 1
5A
2.
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THEOREM 2.5.4 If the coefficient matrix A of a system of n equations
in n unknowns is non–singular, then the system AX = B has the unique
solution X = A−1B.

Proof. Assume that A−1 exists.

1. (Uniqueness.) Assume that AX = B. Then

(A−1A)X = A−1B,

InX = A−1B,

X = A−1B.

2. (Existence.) Let X = A−1B. Then

AX = A(A−1B) = (AA−1)B = InB = B.

THEOREM 2.5.5 (Cramer’s rule for 2 equations in 2 unknowns)

The system

ax+ by = e

cx+ dy = f

has a unique solution if ∆ =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

6= 0, namely

x =
∆1
∆
, y =

∆2
∆
,

where

∆1 =

∣

∣

∣

∣

e b
f d

∣

∣

∣

∣

and ∆2 =

∣

∣

∣

∣

a e
c f

∣

∣

∣

∣

.

Proof. Suppose ∆ 6= 0. Then A =
[

a b
c d

]

has inverse

A−1 = ∆−1
[

d −b
−c a

]

and we know that the system

A

[

x
y

]

=

[

e
f

]
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has the unique solution

[

x
y

]

= A−1
[

e
f

]

=
1

∆

[

d −b
−c a

] [

e
f

]

=
1

∆

[

de− bf
−ce+ af

]

=
1

∆

[

∆1
∆2

]

=

[

∆1/∆
∆2/∆

]

.

Hence x = ∆1/∆, y = ∆2/∆.

COROLLARY 2.5.1 The homogeneous system

ax+ by = 0

cx+ dy = 0

has only the trivial solution if ∆ =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

6= 0.

EXAMPLE 2.5.4 The system

7x+ 8y = 100

2x− 9y = 10

has the unique solution x = ∆1/∆, y = ∆2/∆, where

∆ =

∣

∣

∣

∣

7 8
2 −9

∣

∣

∣

∣

= −79, ∆1 =
∣

∣

∣

∣

100 8
10 −9

∣

∣

∣

∣

= −980, ∆2 =
∣

∣

∣

∣

7 100
2 10

∣

∣

∣

∣

= −130.

So x = 980
79 and y =

130
79 .

THEOREM 2.5.6 Let A be a square matrix. If A is non–singular, the
homogeneous system AX = 0 has only the trivial solution. Equivalently,
if the homogenous system AX = 0 has a non–trivial solution, then A is
singular.

Proof. If A is non–singular and AX = 0, then X = A−10 = 0.

REMARK 2.5.4 If A∗1, . . . , A∗n denote the columns of A, then the equa-
tion

AX = x1A∗1 + . . .+ xnA∗n

holds. Consequently theorem 2.5.6 tells us that if there exist scalars x1, . . . , xn,
not all zero, such that

x1A∗1 + . . .+ xnA∗n = 0,
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that is, if the columns of A are linearly dependent, then A is singular. An
equivalent way of saying that the columns of A are linearly dependent is that
one of the columns of A is expressible as a sum of certain scalar multiples
of the remaining columns of A; that is one column is a linear combination
of the remaining columns.

EXAMPLE 2.5.5

A =





1 2 3
1 0 1
3 4 7





is singular. For it can be verified that A has reduced row–echelon form





1 0 1
0 1 1
0 0 0





and consequently AX = 0 has a non–trivial solution x = −1, y = −1, z = 1.

REMARK 2.5.5 More generally, if A is row–equivalent to a matrix con-
taining a zero row, then A is singular. For then the homogeneous system
AX = 0 has a non–trivial solution.

An important class of non–singular matrices is that of the elementary
row matrices.

DEFINITION 2.5.2 (Elementary row matrices) There are three types,
Eij , Ei(t), Eij(t), corresponding to the three kinds of elementary row oper-
ation:

1. Eij , (i 6= j) is obtained from the identity matrix In by interchanging
rows i and j.

2. Ei(t), (t 6= 0) is obtained by multiplying the i–th row of In by t.

3. Eij(t), (i 6= j) is obtained from In by adding t times the j–th row of
In to the i–th row.

EXAMPLE 2.5.6 (n = 3.)

E23 =





1 0 0
0 0 1
0 1 0



 , E2(−1) =





1 0 0
0 −1 0
0 0 1



 , E23(−1) =





1 0 0
0 1 −1
0 0 1



 .
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The elementary row matrices have the following distinguishing property:

THEOREM 2.5.7 If a matrix A is pre–multiplied by an elementary row–
matrix, the resulting matrix is the one obtained by performing the corre-
sponding elementary row–operation on A.

EXAMPLE 2.5.7

E23





a b
c d
e f



 =





1 0 0
0 0 1
0 1 0









a b
c d
e f



 =





a b
e f
c d



 .

COROLLARY 2.5.2 The three types of elementary row–matrices are non–
singular. Indeed

1. E−1ij = Eij ;

2. E−1i (t) = Ei(t
−1);

3. (Eij(t))
−1 = Eij(−t).

Proof. Taking A = In in the above theorem, we deduce the following
equations:

EijEij = In

Ei(t)Ei(t
−1) = In = Ei(t

−1)Ei(t) if t 6= 0
Eij(t)Eij(−t) = In = Eij(−t)Eij(t).

EXAMPLE 2.5.8 Find the 3 × 3 matrix A = E3(5)E23(2)E12 explicitly.
Also find A−1.

Solution.

A = E3(5)E23(2)





0 1 0
1 0 0
0 0 1



 = E3(5)





0 1 0
1 0 2
0 0 1



 =





0 1 0
1 0 2
0 0 5



 .

To find A−1, we have

A−1 = (E3(5)E23(2)E12)
−1

= E−112 (E23(2))
−1 (E3(5))

−1

= E12E23(−2)E3(5−1)
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= E12E23(−2)





1 0 0
0 1 0
0 0 1

5





= E12





1 0 0
0 1 −25
0 0 1

5



 =





0 1 −25
1 0 0
0 0 1

5



 .

REMARK 2.5.6 Recall that A and B are row–equivalent if B is obtained
from A by a sequence of elementary row operations. If E1, . . . , Er are the
respective corresponding elementary row matrices, then

B = Er (. . . (E2(E1A)) . . .) = (Er . . . E1)A = PA,

where P = Er . . . E1 is non–singular. Conversely if B = PA, where P is
non–singular, then A is row–equivalent to B. For as we shall now see, P is
in fact a product of elementary row matrices.

THEOREM 2.5.8 Let A be non–singular n× n matrix. Then

(i) A is row–equivalent to In,

(ii) A is a product of elementary row matrices.

Proof. Assume that A is non–singular and let B be the reduced row–echelon
form of A. Then B has no zero rows, for otherwise the equation AX = 0
would have a non–trivial solution. Consequently B = In.

It follows that there exist elementary row matrices E1, . . . , Er such that
Er (. . . (E1A) . . .) = B = In and hence A = E−11 . . . E−1r , a product of
elementary row matrices.

THEOREM 2.5.9 Let A be n× n and suppose that A is row–equivalent
to In. Then A is non–singular and A

−1 can be found by performing the
same sequence of elementary row operations on In as were used to convert
A to In.

Proof. Suppose that Er . . . E1A = In. In other words BA = In, where
B = Er . . . E1 is non–singular. Then B

−1(BA) = B−1In and so A = B−1,
which is non–singular.

Also A−1 =
(

B−1
)−1

= B = Er ((. . . (E1In) . . .), which shows that A
−1

is obtained from In by performing the same sequence of elementary row
operations as were used to convert A to In.
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REMARK 2.5.7 It follows from theorem 2.5.9 that if A is singular, then
A is row–equivalent to a matrix whose last row is zero.

EXAMPLE 2.5.9 Show that A =

[

1 2
1 1

]

is non–singular, find A−1 and

express A as a product of elementary row matrices.

Solution. We form the partitionedmatrix [A|I2] which consists ofA followed
by I2. Then any sequence of elementary row operations which reduces A to
I2 will reduce I2 to A

−1. Here

[A|I2] =
[

1 2 1 0
1 1 0 1

]

R2 → R2 −R1
[

1 2 1 0
0 −1 −1 1

]

R2 → (−1)R2
[

1 2 1 0
0 1 1 −1

]

R1 → R1 − 2R2
[

1 0 −1 2
0 1 1 −1

]

.

Hence A is row–equivalent to I2 and A is non–singular. Also

A−1 =

[

−1 2
1 −1

]

.

We also observe that

E12(−2)E2(−1)E21(−1)A = I2.

Hence

A−1 = E12(−2)E2(−1)E21(−1)
A = E21(1)E2(−1)E12(2).

The next result is the converse of Theorem 2.5.6 and is useful for proving
the non–singularity of certain types of matrices.

THEOREM 2.5.10 Let A be an n × n matrix with the property that
the homogeneous system AX = 0 has only the trivial solution. Then A is
non–singular. Equivalently, if A is singular, then the homogeneous system
AX = 0 has a non–trivial solution.
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Proof. If A is n × n and the homogeneous system AX = 0 has only the
trivial solution, then it follows that the reduced row–echelon form B of A
cannot have zero rows and must therefore be In. Hence A is non–singular.

COROLLARY 2.5.3 Suppose that A and B are n × n and AB = In.
Then BA = In.

Proof. Let AB = In, where A and B are n × n. We first show that B
is non–singular. Assume BX = 0. Then A(BX) = A0 = 0, so (AB)X =
0, InX = 0 and hence X = 0.
Then from AB = In we deduce (AB)B

−1 = InB
−1 and hence A = B−1.

The equation BB−1 = In then gives BA = In.

Before we give the next example of the above criterion for non-singularity,
we introduce an important matrix operation.

DEFINITION 2.5.3 (The transpose of a matrix) Let A be an m×n
matrix. Then At, the transpose of A, is the matrix obtained by interchanging
the rows and columns of A. In other words if A = [aij ], then

(

At
)

ji
= aij .

Consequently At is n×m.

The transpose operation has the following properties:

1.
(

At
)t
= A;

2. (A±B)t = At ±Bt if A and B are m× n;

3. (sA)t = sAt if s is a scalar;

4. (AB)t = BtAt if A is m× n and B is n× p;

5. If A is non–singular, then At is also non–singular and

(

At
)−1

=
(

A−1
)t
;

6. XtX = x21 + . . .+ x
2
n if X = [x1, . . . , xn]

t is a column vector.

We prove only the fourth property. First check that both (AB)t and BtAt

have the same size (p × m). Moreover, corresponding elements of both
matrices are equal. For if A = [aij ] and B = [bjk], we have

(

(AB)t
)

ki
= (AB)ik

=
n
∑

j=1

aijbjk
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=
n
∑

j=1

(

Bt
)

kj

(

At
)

ji

=
(

BtAt
)

ki
.

There are two important classes of matrices that can be defined concisely
in terms of the transpose operation.

DEFINITION 2.5.4 (Symmetric matrix) A real matrixA is called sym-
metric if At = A. In other words A is square (n × n say) and aji = aij for
all 1 ≤ i ≤ n, 1 ≤ j ≤ n. Hence

A =

[

a b
b c

]

is a general 2× 2 symmetric matrix.
DEFINITION 2.5.5 (Skew–symmetric matrix) A real matrixA is called
skew–symmetric if At = −A. In other words A is square (n × n say) and
aji = −aij for all 1 ≤ i ≤ n, 1 ≤ j ≤ n.

REMARK 2.5.8 Taking i = j in the definition of skew–symmetric matrix
gives aii = −aii and so aii = 0. Hence

A =

[

0 b
−b 0

]

is a general 2× 2 skew–symmetric matrix.
We can now state a second application of the above criterion for non–
singularity.

COROLLARY 2.5.4 Let B be an n × n skew–symmetric matrix. Then
A = In −B is non–singular.
Proof. Let A = In − B, where Bt = −B. By Theorem 2.5.10 it suffices to
show that AX = 0 implies X = 0.
We have (In −B)X = 0, so X = BX. Hence X tX = XtBX.

Taking transposes of both sides gives

(XtBX)t = (XtX)t

XtBt(Xt)t = Xt(Xt)t

Xt(−B)X = XtX

−XtBX = XtX = XtBX.

Hence XtX = −XtX and XtX = 0. But if X = [x1, . . . , xn]
t, then XtX =

x21 + . . .+ x
2
n = 0 and hence x1 = 0, . . . , xn = 0.
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2.6 Least squares solution of equations

Suppose AX = B represents a system of linear equations with real coeffi-
cients which may be inconsistent, because of the possibility of experimental
errors in determining A or B. For example, the system

x = 1

y = 2

x+ y = 3.001

is inconsistent.
It can be proved that the associated system AtAX = AtB is always

consistent and that any solution of this system minimizes the sum r21+ . . .+
r2m, where r1, . . . , rm (the residuals) are defined by

ri = ai1x1 + . . .+ ainxn − bi,

for i = 1, . . . ,m. The equations represented by AtAX = AtB are called the
normal equations corresponding to the system AX = B and any solution
of the system of normal equations is called a least squares solution of the
original system.

EXAMPLE 2.6.1 Find a least squares solution of the above inconsistent
system.

Solution. Here A =





1 0
0 1
1 1



 , X =

[

x
y

]

, B =





1
2

3.001



.

Then AtA =

[

1 0 1
0 1 1

]





1 0
0 1
1 1



 =

[

2 1
1 2

]

.

Also AtB =

[

1 0 1
0 1 1

]





1
2

3.001



 =

[

4.001
5.001

]

.

So the normal equations are

2x+ y = 4.001

x+ 2y = 5.001

which have the unique solution

x =
3.001

3
, y =

6.001

3
.
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EXAMPLE 2.6.2 Points (x1, y1), . . . , (xn, yn) are experimentally deter-
mined and should lie on a line y = mx+ c. Find a least squares solution to
the problem.

Solution. The points have to satisfy

mx1 + c = y1
...

mxn + c = yn,

or Ax = B, where

A =







x1 1
...

...
xn 1






, X =

[

m
c

]

, B =







y1
...
yn






.

The normal equations are given by (AtA)X = AtB. Here

AtA =

[

x1 . . . xn
1 . . . 1

]







x1 1
...

...
xn 1






=

[

x21 + . . .+ x
2
n x1 + . . .+ xn

x1 + . . .+ xn n

]

Also

AtB =

[

x1 . . . xn
1 . . . 1

]







y1
...
yn






=

[

x1y1 + . . .+ xnyn
y1 + . . .+ yn

]

.

It is not difficult to prove that

∆ = det (AtA) =
∑

1≤i<j≤n
(xi − xj)2,

which is positive unless x1 = . . . = xn. Hence if not all of x1, . . . , xn are
equal, AtA is non–singular and the normal equations have a unique solution.
This can be shown to be

m =
1

∆

∑

1≤i<j≤n
(xi − xj)(yi − yj), c =

1

∆

∑

1≤i<j≤n
(xiyj − xjyi)(xi − xj).

REMARK 2.6.1 The matrix AtA is symmetric.
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2.7 PROBLEMS

1. Let A =

[

1 4
−3 1

]

. Prove that A is non–singular, find A−1 and

express A as a product of elementary row matrices.

[Answer: A−1 =

[

1
13 − 4

13
3
13

1
13

]

,

A = E21(−3)E2(13)E12(4) is one such decomposition.]

2. A square matrix D = [dij ] is called diagonal if dij = 0 for i 6= j. (That
is the off–diagonal elements are zero.) Prove that pre–multiplication
of a matrix A by a diagonal matrix D results in matrix DA whose
rows are the rows of A multiplied by the respective diagonal elements
of D. State and prove a similar result for post–multiplication by a
diagonal matrix.

Let diag (a1, . . . , an) denote the diagonal matrix whose diagonal ele-
ments dii are a1, . . . , an, respectively. Show that

diag (a1, . . . , an)diag (b1, . . . , bn) = diag (a1b1, . . . , anbn)

and deduce that if a1 . . . an 6= 0, then diag (a1, . . . , an) is non–singular
and

(diag (a1, . . . , an))
−1 = diag (a−11 , . . . , a−1n ).

Also prove that diag (a1, . . . , an) is singular if ai = 0 for some i.

3. Let A =





0 0 2
1 2 6
3 7 9



. Prove that A is non–singular, find A−1 and

express A as a product of elementary row matrices.

[Answers: A−1 =





−12 7 −2
9
2 −3 1
1
2 0 0



,

A = E12E31(3)E23E3(2)E12(2)E13(24)E23(−9) is one such decompo-
sition.]
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4. Find the rational number k for which the matrix A =





1 2 k
3 −1 1
5 3 −5





is singular. [Answer: k = −3.]

5. Prove that A =

[

1 2
−2 −4

]

is singular and find a non–singular matrix

P such that PA has last row zero.

6. If A =

[

1 4
−3 1

]

, verify that A2 − 2A + 13I2 = 0 and deduce that

A−1 = − 1
13(A− 2I2).

7. Let A =





1 1 −1
0 0 1
2 1 2



.

(i) Verify that A3 = 3A2 − 3A+ I3.
(ii) Express A4 in terms of A2, A and I3 and hence calculate A

4

explicitly.

(iii) Use (i) to prove that A is non–singular and find A−1 explicitly.

[Answers: (ii) A4 = 6A2 − 8A+ 3I3 =





−11 −8 −4
12 9 4
20 16 5



;

(iii) A−1 = A2 − 3A+ 3I3 =





−1 −3 1
2 4 −1
0 1 0



.]

8. (i) Let B be an n×n matrix such that B3 = 0. If A = In−B, prove
that A is non–singular and A−1 = In +B +B

2.

Show that the system of linear equations AX = b has the solution

X = b+Bb+B2b.

(ii) If B =





0 r s
0 0 t
0 0 0



, verify that B3 = 0 and use (i) to determine

(I3 −B)−1 explicitly.
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[Answer:





1 r s+ rt
0 1 t
0 0 1



.]

9. Let A be n× n.

(i) If A2 = 0, prove that A is singular.

(ii) If A2 = A and A 6= In, prove that A is singular.

10. Use Question 7 to solve the system of equations

x+ y − z = a

z = b

2x+ y + 2z = c

where a, b, c are given rationals. Check your answer using the Gauss–
Jordan algorithm.

[Answer: x = −a− 3b+ c, y = 2a+ 4b− c, z = b.]

11. Determine explicitly the following products of 3 × 3 elementary row
matrices.

(i) E12E23 (ii) E1(5)E12 (iii) E12(3)E21(−3) (iv) (E1(100))
−1

(v) E−112 (vi) (E12(7))
−1 (vii) (E12(7)E31(1))

−1.

[Answers: (i)





0 0 1
1 0 0
0 1 0



 (ii)





0 5 0
1 0 0
0 0 1



 (iii)





−8 3 0
−3 1 0
0 0 1





(iv)





1
100 0 0
0 1 0
0 0 1



 (v)





0 1 0
1 0 0
0 0 1



 (vi)





1 −7 0
0 1 0
0 0 1



 (vii)





1 −7 0
0 1 0

−1 7 1



.]

12. Let A be the following product of 4× 4 elementary row matrices:
A = E3(2)E14E42(3).

Find A and A−1 explicitly.

[Answers: A =









0 3 0 1
0 1 0 0
0 0 2 0
1 0 0 0









, A−1 =









0 0 0 1
0 1 0 0
0 0 1

2 0
1 −3 0 0









.]
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13. Determine which of the following matrices over Z2 are non–singular
and find the inverse, where possible.

(a)









1 1 0 1
0 0 1 1
1 1 1 1
1 0 0 1









(b)









1 1 0 1
0 1 1 1
1 0 1 0
1 1 0 1









.

[Answer: (a)









1 1 1 1
1 0 0 1
1 0 1 0
1 1 1 0









.]

14. Determine which of the following matrices are non–singular and find
the inverse, where possible.

(a)





1 1 1
−1 1 0
2 0 0



 (b)





2 2 4
1 0 1
0 1 0



 (c)





4 6 −3
0 0 7
0 0 5





(d)





2 0 0
0 −5 0
0 0 7



 (e)









1 2 4 6
0 1 2 0
0 0 1 2
0 0 0 2









(f)





1 2 3
4 5 6
5 7 9



.

[Answers: (a)





0 0 1
2

0 1 1
2

1 −1 −1



 (b)





−12 2 1
0 0 1
1
2 −1 −1



 (d)





1
2 0 0
0 −15 0
0 0 1

7





(e)









1 −2 0 −3
0 1 −2 2
0 0 1 −1
0 0 0 1

2









.]

15. Let A be a non–singular n× n matrix. Prove that At is non–singular
and that (At)−1 = (A−1)t.

16. Prove that A =

[

a b
c d

]

has no inverse if ad− bc = 0.

[Hint: Use the equation A2 − (a+ d)A+ (ad− bc)I2 = 0.]
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17. Prove that the real matrix A =





1 a b
−a 1 c
−b −c 1



 is non–singular by

proving that A is row–equivalent to I3.

18. If P−1AP = B, prove that P−1AnP = Bn for n ≥ 1.

19. Let A =

[

2
3

1
4

1
3

3
4

]

, P =

[

1 3
−1 4

]

. Verify that P−1AP =

[

5
12 0
0 1

]

and deduce that

An =
1

7

[

3 3
4 4

]

+
1

7

(

5

12

)n [
4 −3

−4 3

]

.

20. Let A =

[

a b
c d

]

be aMarkovmatrix; that is a matrix whose elements

are non–negative and satisfy a+c = 1 = b+d. Also let P =

[

b 1
c −1

]

.

Prove that if A 6= I2 then

(i) P is non–singular and P−1AP =

[

1 0
0 a+ d− 1

]

,

(ii) An → 1

b+ c

[

b b
c c

]

as n→∞, if A 6=
[

0 1
1 0

]

.

21. If X =





1 2
3 4
5 6



 and Y =





−1
3
4



, find XXt, XtX, Y Y t, Y tY .

[Answers:





5 11 17
11 25 39
17 39 61



 ,

[

35 44
44 56

]

,





1 −3 −4
−3 9 12
−4 12 16



 , 26.]

22. Prove that the system of linear equations

x+ 2y = 4
x+ y = 5

3x+ 5y = 12

is inconsistent and find a least squares solution of the system.

[Answer: x = 6, y = −7/6.]
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23. The points (0, 0), (1, 0), (2, −1), (3, 4), (4, 8) are required to lie on a
parabola y = a + bx + cx2. Find a least squares solution for a, b, c.
Also prove that no parabola passes through these points.

[Answer: a = 1
5 , b = −2, c = 1.]

24. If A is a symmetric n×n real matrix and B is n×m, prove that BtAB
is a symmetric m×m matrix.

25. If A is m× n and B is n×m, prove that AB is singular if m > n.

26. Let A and B be n × n. If A or B is singular, prove that AB is also
singular.



Chapter 3

SUBSPACES

3.1 Introduction

Throughout this chapter, we will be studying F n, the set of all n–dimensional
column vectors with components from a field F . We continue our study of
matrices by considering an important class of subsets of F n called subspaces.
These arise naturally for example, when we solve a system of m linear ho-
mogeneous equations in n unknowns.
We also study the concept of linear dependence of a family of vectors.

This was introduced briefly in Chapter 2, Remark 2.5.4. Other topics dis-
cussed are the row space, column space and null space of a matrix over F ,
the dimension of a subspace, particular examples of the latter being the rank
and nullity of a matrix.

3.2 Subspaces of F n

DEFINITION 3.2.1 A subset S of F n is called a subspace of F n if

1. The zero vector belongs to S; (that is, 0 ∈ S);

2. If u ∈ S and v ∈ S, then u + v ∈ S; (S is said to be closed under
vector addition);

3. If u ∈ S and t ∈ F , then tu ∈ S; (S is said to be closed under scalar
multiplication).

EXAMPLE 3.2.1 Let A ∈ Mm×n(F ). Then the set of vectors X ∈ F n

satisfying AX = 0 is a subspace of F n called the null space of A and is
denoted here by N(A). (It is sometimes called the solution space of A.)

55
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Proof. (1) A0 = 0, so 0 ∈ N(A); (2) If X, Y ∈ N(A), then AX = 0 and
AY = 0, so A(X + Y ) = AX +AY = 0 + 0 = 0 and so X + Y ∈ N(A); (3)
If X ∈ N(A) and t ∈ F , then A(tX) = t(AX) = t0 = 0, so tX ∈ N(A).

For example, if A =

[

1 0
0 1

]

, then N(A) = {0}, the set consisting of

just the zero vector. If A =

[

1 2
2 4

]

, then N(A) is the set of all scalar

multiples of [−2, 1]t.

EXAMPLE 3.2.2 Let X1, . . . , Xm ∈ Fn. Then the set consisting of all
linear combinations x1X1 + · · · + xmXm, where x1, . . . , xm ∈ F , is a sub-
space of F n. This subspace is called the subspace spanned or generated by
X1, . . . , Xm and is denoted here by 〈X1, . . . , Xm〉. We also call X1, . . . , Xm

a spanning family for S = 〈X1, . . . , Xm〉.

Proof. (1) 0 = 0X1 + · · · + 0Xm, so 0 ∈ 〈X1, . . . , Xm〉; (2) If X, Y ∈
〈X1, . . . , Xm〉, then X = x1X1 + · · ·+ xmXm and Y = y1X1 + · · ·+ ymXm,
so

X + Y = (x1X1 + · · ·+ xmXm) + (y1X1 + · · ·+ ymXm)

= (x1 + y1)X1 + · · ·+ (xm + ym)Xm ∈ 〈X1, . . . , Xm〉.

(3) If X ∈ 〈X1, . . . , Xm〉 and t ∈ F , then

X = x1X1 + · · ·+ xmXm

tX = t(x1X1 + · · ·+ xmXm)

= (tx1)X1 + · · ·+ (txm)Xm ∈ 〈X1, . . . , Xm〉.

For example, if A ∈Mm×n(F ), the subspace generated by the columns of A
is an important subspace of Fm and is called the column space of A. The
column space of A is denoted here by C(A). Also the subspace generated
by the rows of A is a subspace of F n and is called the row space of A and is
denoted by R(A).

EXAMPLE 3.2.3 For example F n = 〈E1, . . . , En〉, where E1, . . . , En are
the n–dimensional unit vectors. For if X = [x1, . . . , xn]

t ∈ Fn, then X =
x1E1 + · · ·+ xnEn.

EXAMPLE 3.2.4 Find a spanning family for the subspace S of R3 defined
by the equation 2x− 3y + 5z = 0.
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Solution. (S is in fact the null space of [2, −3, 5], so S is indeed a subspace
of R3.)
If [x, y, z]t ∈ S, then x = 3

2y − 5
2z. Then





x
y
z



 =





3
2y − 5

2z
y
z



 = y





3
2
1
0



+ z





−52
0
1





and conversely. Hence [ 32 , 1, 0]
t and [−52 , 0, 1]t form a spanning family for

S.
The following result is easy to prove:

LEMMA 3.2.1 Suppose each of X1, . . . , Xr is a linear combination of
Y1, . . . , Ys. Then any linear combination of X1, . . . , Xr is a linear combi-
nation of Y1, . . . , Ys.

As a corollary we have

THEOREM 3.2.1 Subspaces 〈X1, . . . , Xr〉 and 〈Y1, . . . , Ys〉 are equal if
each ofX1, . . . , Xr is a linear combination of Y1, . . . , Ys and each of Y1, . . . , Ys
is a linear combination of X1, . . . , Xr.

COROLLARY 3.2.1 Subspaces 〈X1, . . . , Xr, Z1, . . . , Zt〉 and 〈X1, . . . , Xr〉
are equal if each of Z1, . . . , Zt is a linear combination of X1, . . . , Xr.

EXAMPLE 3.2.5 If X and Y are vectors in Rn, then

〈X, Y 〉 = 〈X + Y, X − Y 〉.

Solution. Each of X + Y and X − Y is a linear combination of X and Y .
Also

X =
1

2
(X + Y ) +

1

2
(X − Y ) and Y =

1

2
(X + Y )− 1

2
(X − Y ),

so each of X and Y is a linear combination of X + Y and X − Y .
There is an important application of Theorem 3.2.1 to row equivalent

matrices (see Definition 1.2.4):

THEOREM 3.2.2 If A is row equivalent to B, then R(A) = R(B).

Proof. Suppose that B is obtained from A by a sequence of elementary row
operations. Then it is easy to see that each row of B is a linear combination
of the rows of A. But A can be obtained from B by a sequence of elementary
operations, so each row of A is a linear combination of the rows of B. Hence
by Theorem 3.2.1, R(A) = R(B).
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REMARK 3.2.1 If A is row equivalent to B, it is not always true that
C(A) = C(B).

For example, if A =

[

1 1
1 1

]

and B =

[

1 1
0 0

]

, then B is in fact the

reduced row–echelon form of A. However we see that

C(A) =

〈[

1
1

]

,

[

1
1

]〉

=

〈[

1
1

]〉

and similarly C(B) =

〈[

1
0

]〉

.

Consequently C(A) 6= C(B), as

[

1
1

]

∈ C(A) but
[

1
1

]

6∈ C(B).

3.3 Linear dependence

We now recall the definition of linear dependence and independence of a
family of vectors in F n given in Chapter 2.

DEFINITION 3.3.1 Vectors X1, . . . , Xm in Fn are said to be linearly
dependent if there exist scalars x1, . . . , xm, not all zero, such that

x1X1 + · · ·+ xmXm = 0.

In other words, X1, . . . , Xm are linearly dependent if some Xi is expressible
as a linear combination of the remaining vectors.

X1, . . . , Xm are called linearly independent if they are not linearly depen-
dent. Hence X1, . . . , Xm are linearly independent if and only if the equation

x1X1 + · · ·+ xmXm = 0

has only the trivial solution x1 = 0, . . . , xm = 0.

EXAMPLE 3.3.1 The following three vectors in R3

X1 =





1
2
3



 , X2 =





−1
1
2



 , X3 =





−1
7
12





are linearly dependent, as 2X1 + 3X2 + (−1)X3 = 0.
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REMARK 3.3.1 If X1, . . . , Xm are linearly independent and

x1X1 + · · ·+ xmXm = y1X1 + · · ·+ ymXm,

then x1 = y1, . . . , xm = ym. For the equation can be rewritten as

(x1 − y1)X1 + · · ·+ (xm − ym)Xm = 0

and so x1 − y1 = 0, . . . , xm − ym = 0.

THEOREM 3.3.1 A family of m vectors in F n will be linearly dependent
if m > n. Equivalently, any linearly independent family of m vectors in F n

must satisfy m ≤ n.

Proof. The equation

x1X1 + · · ·+ xmXm = 0

is equivalent to n homogeneous equations inm unknowns. By Theorem 1.5.1,
such a system has a non–trivial solution if m > n.

The following theorem is an important generalization of the last result
and is left as an exercise for the interested student:

THEOREM 3.3.2 A family of s vectors in 〈X1, . . . , Xr〉 will be linearly
dependent if s > r. Equivalently, a linearly independent family of s vectors
in 〈X1, . . . , Xr〉 must have s ≤ r.

Here is a useful criterion for linear independence which is sometimes
called the left–to–right test:

THEOREM 3.3.3 Vectors X1, . . . , Xm in F
n are linearly independent if

(a) X1 6= 0;

(b) For each k with 1 < k ≤ m, Xk is not a linear combination of
X1, . . . , Xk−1.

One application of this criterion is the following result:

THEOREM 3.3.4 Every subspace S of F n can be represented in the form
S = 〈X1, . . . , Xm〉, where m ≤ n.
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Proof. If S = {0}, there is nothing to prove – we take X1 = 0 and m = 1.
So we assume S contains a non–zero vector X1; then 〈X1〉 ⊆ S as S is a

subspace. If S = 〈X1〉, we are finished. If not, S will contain a vector X2,
not a linear combination of X1; then 〈X1, X2〉 ⊆ S as S is a subspace. If
S = 〈X1, X2〉, we are finished. If not, S will contain a vector X3 which is
not a linear combination of X1 and X2. This process must eventually stop,
for at stage k we have constructed a family of k linearly independent vectors
X1, . . . , Xk, all lying in F

n and hence k ≤ n.

There is an important relationship between the columns of A and B, if
A is row–equivalent to B.

THEOREM 3.3.5 Suppose that A is row equivalent to B and let c1, . . . , cr
be distinct integers satisfying 1 ≤ ci ≤ n. Then

(a) Columns A∗c1 , . . . , A∗cr of A are linearly dependent if and only if the
corresponding columns of B are linearly dependent; indeed more is
true:

x1A∗c1 + · · ·+ xrA∗cr = 0⇔ x1B∗c1 + · · ·+ xrB∗cr = 0.

(b) Columns A∗c1 , . . . , A∗cr of A are linearly independent if and only if the
corresponding columns of B are linearly independent.

(c) If 1 ≤ cr+1 ≤ n and cr+1 is distinct from c1, . . . , cr, then

A∗cr+1 = z1A∗c1 + · · ·+ zrA∗cr ⇔ B∗cr+1 = z1B∗c1 + · · ·+ zrB∗cr .

Proof. First observe that if Y = [y1, . . . , yn]
t is an n–dimensional column

vector and A is m× n, then

AY = y1A∗1 + · · ·+ ynA∗n.

Also AY = 0 ⇔ BY = 0, if B is row equivalent to A. Then (a) follows by
taking yi = xcj if i = cj and yi = 0 otherwise.

(b) is logically equivalent to (a), while (c) follows from (a) as

A∗cr+1 = z1A∗c1 + · · ·+ zrA∗cr ⇔ z1A∗c1 + · · ·+ zrA∗cr + (−1)A∗cr+1 = 0

⇔ z1B∗c1 + · · ·+ zrB∗cr + (−1)B∗cr+1 = 0

⇔ B∗cr+1 = z1B∗c1 + · · ·+ zrB∗cr .
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EXAMPLE 3.3.2 The matrix

A =





1 1 5 1 4
2 −1 1 2 2
3 0 6 0 −3





has reduced row–echelon form equal to

B =





1 0 2 0 −1
0 1 3 0 2
0 0 0 1 3



 .

We notice that B∗1, B∗2 and B∗4 are linearly independent and hence so are
A∗1, A∗2 and A∗4. Also

B∗3 = 2B∗1 + 3B∗2
B∗5 = (−1)B∗1 + 2B∗2 + 3B∗4,

so consequently

A∗3 = 2A∗1 + 3A∗2
A∗5 = (−1)A∗1 + 2A∗2 + 3A∗4.

3.4 Basis of a subspace

We now come to the important concept of basis of a vector subspace.

DEFINITION 3.4.1 Vectors X1, . . . , Xm belonging to a subspace S are
said to form a basis of S if

(a) Every vector in S is a linear combination of X1, . . . , Xm;

(b) X1, . . . , Xm are linearly independent.

Note that (a) is equivalent to the statement that S = 〈X1, . . . , Xm〉 as we
automatically have 〈X1, . . . , Xm〉 ⊆ S. Also, in view of Remark 3.3.1 above,
(a) and (b) are equivalent to the statement that every vector in S is uniquely
expressible as a linear combination of X1, . . . , Xm.

EXAMPLE 3.4.1 The unit vectors E1, . . . , En form a basis for F
n.
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REMARK 3.4.1 The subspace {0}, consisting of the zero vector alone,
does not have a basis. For every vector in a linearly independent family
must necessarily be non–zero. (For example, if X1 = 0, then we have the
non–trivial linear relation

1X1 + 0X2 + · · ·+ 0Xm = 0

and X1, . . . , Xm would be linearly dependent.)

However if we exclude this case, every other subspace of F n has a basis:

THEOREM 3.4.1 A subspace of the form 〈X1, . . . , Xm〉, where at least
one of X1, . . . , Xm is non–zero, has a basis Xc1 , . . . , Xcr , where 1 ≤ c1 <
· · · < cr ≤ m.

Proof. (The left–to–right algorithm). Let c1 be the least index k for which
Xk is non–zero. If c1 = m or if all the vectors Xk with k > c1 are linear
combinations of Xc1 , terminate the algorithm and let r = 1. Otherwise let
c2 be the least integer k > c1 such that Xk is not a linear combination of
Xc1 .
If c2 = m or if all the vectors Xk with k > c2 are linear combinations

of Xc1 and Xc2 , terminate the algorithm and let r = 2. Eventually the
algorithm will terminate at the r–th stage, either because cr = m, or because
all vectors Xk with k > cr are linear combinations of Xc1 , . . . , Xcr .
Then it is clear by the construction of Xc1 , . . . , Xcr , using Corollary 3.2.1

that

(a) 〈Xc1 , . . . , Xcr〉 = 〈X1, . . . , Xm〉;

(b) the vectors Xc1 , . . . , Xcr are linearly independent by the left–to–right
test.

Consequently Xc1 , . . . , Xcr form a basis (called the left–to–right basis) for
the subspace 〈X1, . . . , Xm〉.
EXAMPLE 3.4.2 Let X and Y be linearly independent vectors in Rn.
Then the subspace 〈0, 2X, X, −Y, X+Y 〉 has left–to–right basis consisting
of 2X, −Y .
A subspace S will in general have more than one basis. For example, any
permutation of the vectors in a basis will yield another basis. Given one
particular basis, one can determine all bases for S using a simple formula.
This is left as one of the problems at the end of this chapter.
We settle for the following important fact about bases:



3.4. BASIS OF A SUBSPACE 63

THEOREM 3.4.2 Any two bases for a subspace S must contain the same
number of elements.

Proof. For if X1, . . . , Xr and Y1, . . . , Ys are bases for S, then Y1, . . . , Ys
form a linearly independent family in S = 〈X1, . . . , Xr〉 and hence s ≤ r by
Theorem 3.3.2. Similarly r ≤ s and hence r = s.

DEFINITION 3.4.2 This number is called the dimension of S and is
written dimS. Naturally we define dim {0} = 0.

It follows from Theorem 3.3.1 that for any subspace S of F n, we must have
dimS ≤ n.

EXAMPLE 3.4.3 If E1, . . . , En denote the n–dimensional unit vectors in
Fn, then dim 〈E1, . . . , Ei〉 = i for 1 ≤ i ≤ n.

The following result gives a useful way of exhibiting a basis.

THEOREM 3.4.3 A linearly independent family of m vectors in a sub-
space S, with dimS = m, must be a basis for S.

Proof. Let X1, . . . , Xm be a linearly independent family of vectors in a
subspace S, where dimS = m. We have to show that every vector X ∈ S is
expressible as a linear combination ofX1, . . . , Xm. We consider the following
family of vectors in S: X1, . . . , Xm, X. This family contains m+1 elements
and is consequently linearly dependent by Theorem 3.3.2. Hence we have

x1X1 + · · ·+ xmXm + xm+1X = 0, (3.1)

where not all of x1, . . . , xm+1 are zero. Now if xm+1 = 0, we would have

x1X1 + · · ·+ xmXm = 0,

with not all of x1, . . . , xm zero, contradictiong the assumption thatX1 . . . , Xm

are linearly independent. Hence xm+1 6= 0 and we can use equation 3.1 to
express X as a linear combination of X1, . . . , Xm:

X =
−x1
xm+1

X1 + · · ·+
−xm
xm+1

Xm.
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3.5 Rank and nullity of a matrix

We can now define three important integers associated with a matrix.

DEFINITION 3.5.1 Let A ∈Mm×n(F ). Then

(a) column rankA =dimC(A);

(b) row rankA =dimR(A);

(c) nullityA =dimN(A).

We will now see that the reduced row–echelon form B of a matrix A allows
us to exhibit bases for the row space, column space and null space of A.
Moreover, an examination of the number of elements in each of these bases
will immediately result in the following theorem:

THEOREM 3.5.1 Let A ∈Mm×n(F ). Then

(a) column rankA =row rankA;

(b) column rankA+nullityA = n.

Finding a basis for R(A): The r non–zero rows of B form a basis for R(A)
and hence row rankA = r.
For we have seen earlier that R(A) = R(B). Also

R(B) = 〈B1∗, . . . , Bm∗〉
= 〈B1∗, . . . , Br∗, 0 . . . , 0〉
= 〈B1∗, . . . , Br∗〉.

The linear independence of the non–zero rows of B is proved as follows: Let
the leading entries of rows 1, . . . , r of B occur in columns c1, . . . , cr. Suppose
that

x1B1∗ + · · ·+ xrBr∗ = 0.

Then equating components c1, . . . , cr of both sides of the last equation, gives
x1 = 0, . . . , xr = 0, in view of the fact that B is in reduced row– echelon
form.

Finding a basis for C(A): The r columns A∗c1 , . . . , A∗cr form a basis for
C(A) and hence column rank A = r. For it is clear that columns c1, . . . , cr
of B form the left–to–right basis for C(B) and consequently from parts (b)
and (c) of Theorem 3.3.5, it follows that columns c1, . . . , cr of A form the
left–to–right basis for C(A).
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Finding a basis for N(A): For notational simplicity, let us suppose that c1 =
1, . . . , cr = r. Then B has the form

B =

























1 0 · · · 0 b1r+1 · · · b1n
0 1 · · · 0 b2r+1 · · · b2n
...
... · · · ...

... · · · ...
0 0 · · · 1 brr+1 · · · brn
0 0 · · · 0 0 · · · 0
...
... · · · ...

... · · · ...
0 0 · · · 0 0 · · · 0

























.

Then N(B) and hence N(A) are determined by the equations

x1 = (−b1r+1)xr+1 + · · ·+ (−b1n)xn
...

xr = (−brr+1)xr+1 + · · ·+ (−brn)xn,

where xr+1, . . . , xn are arbitrary elements of F . Hence the general vector X
in N(A) is given by





















x1
...
xr
xr+1
...
xn





















= xr+1





















−b1r+1
...

−brr+1
1
...
0





















+ · · ·+ xn





















−bn
...

−brn
0
...
1





















(3.2)

= xr+1X1 + · · ·+ xnXn−r.

Hence N(A) is spanned by X1, . . . , Xn−r, as xr+1, . . . , xn are arbitrary. Also
X1, . . . , Xn−r are linearly independent. For equating the right hand side of
equation 3.2 to 0 and then equating components r + 1, . . . , n of both sides
of the resulting equation, gives xr+1 = 0, . . . , xn = 0.
Consequently X1, . . . , Xn−r form a basis for N(A).

Theorem 3.5.1 now follows. For we have

row rankA = dimR(A) = r

column rankA = dimC(A) = r.

Hence
row rankA = column rankA.
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Also

column rankA+ nullityA = r + dimN(A) = r + (n− r) = n.

DEFINITION 3.5.2 The common value of column rankA and row rankA
is called the rank of A and is denoted by rankA.

EXAMPLE 3.5.1 Given that the reduced row–echelon form of

A =





1 1 5 1 4
2 −1 1 2 2
3 0 6 0 −3





equal to

B =





1 0 2 0 −1
0 1 3 0 2
0 0 0 1 3



 ,

find bases for R(A), C(A) and N(A).

Solution. [1, 0, 2, 0, −1], [0, 1, 3, 0, 2] and [0, 0, 0, 1, 3] form a basis for
R(A). Also

A∗1 =





1
2
3



 , A∗2 =





1
−1
0



 , A∗4 =





1
2
0





form a basis for C(A).

Finally N(A) is given by













x1
x2
x3
x4
x5













=













−2x3 + x5
−3x3 − 2x5

x3
−3x5
x5













= x3













−2
−3
1
0
0













+ x5













1
−2
0

−3
1













= x3X1 + x5X2,

where x3 and x5 are arbitrary. Hence X1 and X2 form a basis for N(A).

Here rankA = 3 and nullityA = 2.

EXAMPLE 3.5.2 Let A =

[

1 2
2 4

]

. Then B =

[

1 2
0 0

]

is the reduced

row–echelon form of A.
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Hence [1, 2] is a basis for R(A) and

[

1
2

]

is a basis for C(A). Also N(A)

is given by the equation x1 = −2x2, where x2 is arbitrary. Then
[

x1
x2

]

=

[

−2x2
x2

]

= x2

[

−2
1

]

and hence

[

−2
1

]

is a basis for N(A).

Here rankA = 1 and nullityA = 1.

EXAMPLE 3.5.3 Let A =

[

1 2
3 4

]

. Then B =

[

1 0
0 1

]

is the reduced

row–echelon form of A.
Hence [1, 0], [0, 1] form a basis for R(A) while [1, 3], [2, 4] form a basis

for C(A). Also N(A) = {0}.
Here rankA = 2 and nullityA = 0.

We conclude this introduction to vector spaces with a result of great
theoretical importance.

THEOREM 3.5.2 Every linearly independent family of vectors in a sub-
space S can be extended to a basis of S.

Proof. Suppose S has basis X1, . . . , Xm and that Y1, . . . , Yr is a linearly
independent family of vectors in S. Then

S = 〈X1, . . . , Xm〉 = 〈Y1, . . . , Yr, X1, . . . , Xm〉,

as each of Y1, . . . , Yr is a linear combination of X1, . . . , Xm.
Then applying the left–to–right algorithm to the second spanning family

for S will yield a basis for S which includes Y1, . . . , Yr.

3.6 PROBLEMS

1. Which of the following subsets of R2 are subspaces?

(a) [x, y] satisfying x = 2y;

(b) [x, y] satisfying x = 2y and 2x = y;

(c) [x, y] satisfying x = 2y + 1;

(d) [x, y] satisfying xy = 0;
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(e) [x, y] satisfying x ≥ 0 and y ≥ 0.

[Answer: (a) and (b).]

2. If X, Y, Z are vectors in Rn, prove that

〈X, Y, Z〉 = 〈X + Y, X + Z, Y + Z〉.

3. Determine if X1 =









1
0
1
2









, X2 =









0
1
1
2









and X3 =









1
1
1
3









are linearly

independent in R4.

4. For which real numbers λ are the following vectors linearly independent
in R3?

X1 =





λ
−1
−1



 , X2 =





−1
λ
−1



 , X3 =





−1
−1
λ



 .

5. Find bases for the row, column and null spaces of the following matrix
over Q:

A =









1 1 2 0 1
2 2 5 0 3
0 0 0 1 3
8 11 19 0 11









.

6. Find bases for the row, column and null spaces of the following matrix
over Z2:

A =









1 0 1 0 1
0 1 0 1 1
1 1 1 1 0
0 0 1 1 0









.

7. Find bases for the row, column and null spaces of the following matrix
over Z5:

A =









1 1 2 0 1 3
2 1 4 0 3 2
0 0 0 1 3 0
3 0 2 4 3 2









.
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8. Find bases for the row, column and null spaces of the matrix A defined
in section 1.6, Problem 17. (Note: In this question, F is a field of four
elements.)

9. If X1, . . . , Xm form a basis for a subspace S, prove that

X1, X1 +X2, . . . , X1 + · · ·+Xm

also form a basis for S.

10. LetA =

[

a b c
1 1 1

]

. Find conditions on a, b, c such that (a) rankA =

1; (b) rankA = 2.

[Answer: (a) a = b = c; (b) at least two of a, b, c are distinct.]

11. Let S be a subspace of F n with dimS = m. If X1, . . . , Xm are vectors
in S with the property that S = 〈X1, . . . , Xm〉, prove that X1 . . . , Xm

form a basis for S.

12. Find a basis for the subspace S of R3 defined by the equation

x+ 2y + 3z = 0.

Verify that Y1 = [−1, −1, 1]t ∈ S and find a basis for S which includes
Y1.

13. Let X1, . . . , Xm be vectors in F
n. If Xi = Xj , where i < j, prove that

X1, . . .Xm are linearly dependent.

14. Let X1, . . . , Xm+1 be vectors in F
n. Prove that

dim 〈X1, . . . , Xm+1〉 = dim 〈X1, . . . , Xm〉

if Xm+1 is a linear combination of X1, . . . , Xm, but

dim 〈X1, . . . , Xm+1〉 = dim 〈X1, . . . , Xm〉+ 1

if Xm+1 is not a linear combination of X1, . . . , Xm.

Deduce that the system of linear equations AX = B is consistent, if
and only if

rank [A|B] = rankA.



70 CHAPTER 3. SUBSPACES

15. Let a1, . . . , an be elements of F , not all zero. Prove that the set of
vectors [x1, . . . , xn]

t where x1, . . . , xn satisfy

a1x1 + · · ·+ anxn = 0

is a subspace of F n with dimension equal to n− 1.

16. Prove Lemma 3.2.1, Theorem 3.2.1, Corollary 3.2.1 and Theorem 3.3.2.

17. Let R and S be subspaces of F n, with R ⊆ S. Prove that

dimR ≤ dimS

and that equality implies R = S. (This is a very useful way of proving
equality of subspaces.)

18. Let R and S be subspaces of F n. If R ∪ S is a subspace of F n, prove
that R ⊆ S or S ⊆ R.

19. Let X1, . . . , Xr be a basis for a subspace S. Prove that all bases for S
are given by the family Y1, . . . , Yr, where

Yi =

r
∑

j=1

aijXj ,

and where A = [aij ] ∈Mr×r(F ) is a non–singular matrix.


